README -- describes contents of GEOS_2x2.5/mercury_201007 23 May 2012 GEOS-Chem Support Team geos-chem-support@g.harvard.edu NOTE: As of 31 Oct 2011, we have moved the GEOS_2x2.5/mercury_201002/ directory to GEOS_2x2.5/mercury_201007. For backwards compatibility, we have made a symbolic link so that older versions of GEOS-Chem will still function properly. File list: =============================================================================== BrOx.GC.geos5.2x25 : Br and BrO mixing ratios from GEOS-Chem using Justin Parella's bromine chemistry mechanism. (See "Bromine chemistry mechanism" on the GEOS-Chem wiki.) BrOx.GMI.geos5.2x25 : Br and BrO mixing ratios from GMI combo model. These are regridded from the Aura4 simulations of 2007 (courtesy J. Logan, I. Megretskaia). BrOx.TOMCAT_org.geos5.2x25 : Br and BrO mixing ratios from University of Cambridge p-TOMCAT model (courtesy Xin Yang). These are from a simulation with only organic Br-y precursors (no sea-salt aerosol). Chl_2003.geos.2x25 : Mean monthly chlorophyl A concentrations in the ocean. Data is from the MODIS satellite in mg m-3 for 2003 (http://oceancolor.gsfc.nasa.gov/ftp.html) MERGE.O3.47L.geos5.2x25 : O3 mixing ratios for surface through stratosphere. Tropospheric values are from GEOS-Chem v7 full chemistry (sulfate_sim_200507) and stratospheric values are from GMI combo model (Aura runs, courtesy J. Logan and I. Megretskaia). MLD_DReqDT.geos.2x25 : Mean monthly mixed layer depths of the surface ocean in meters. Data is from de Boyer Montegut et al (2004). NPP_2003.geos.2x25 : Mean monthly Net Primary Production from MODIS satellite data in mgC m-2 d-1 for 2003 taken from Behrenfeld et al (1997). OH_3Dglobal.geos5.2x25 : OH concentration for surface through stratosphere. Tropospheric values are from GEOS-Chem v7-02-03 (OHmerge/v7-02-03.2001) and stratospheric values are from GMI combo model (Aura runs, courtesy J. Logan and I. Megretskaia). artisanal.bpch : Mercury from artisanal mining inventory documented in Selin et al., 2008. This is not used when running with the GCAP and GEIA 2005 emission inventories as artisanal mining is already included. jBrO.daytime.geos5.2x25 : Photolysis frequency for BrO, averaged over daylight hours. Calculated in a preliminary GEOS-Chem Br-y simulation for 2002 (courtesy J. Parella). This simulation did not include wet scavenging of Br-y species as this was not yet included in the Br-y model. BrO J-values are used to calculate [Br]/[BrO] ratio in the marine boundary layer. jvalues.noon.geos5.2x25 : Photolysis frequency for NO2, instantaneous at local noon. Calculated in GEOS-Chem full chemistry simulation for 2008 (courtesy J. Mao). NO2 J-values (with imposed diurnal cycle) are used to calculate the reduction rate of Hg(II) in clouds. newnatural.bpch : Natural sources of Hg, scaled to the location of mercury mines as described in Selin et al., 2007. soilhg.preind.bpch : File containing soil concentrations of mercury from the preindustrial soilhg.presentday.bpch : File containing soil concentrations of mercury for the present-day References: =============================================================================== Behrenfeld, M.J., P.G. Falkowski, Photosynthetic rates derived from satellite- based chlorophyll concentration. Limnol. Oceanogr., 42(1), 1-20, 1997. de Boyer Montegut, C., G. Madec, A.S. Fischer, A. Lazar, D. Iudicone, Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res. [Oceans], 109, C12003, doi:10.1029/2004JC002378, 2004. Mao, J., D.J. Jacob, M.J. Evans, J.R. Olson, X. Ren, W.H. Brune, J.M.S. Clair, J.D. Crounse, K.M. Spencer, M.R. Beaver, P.O. Wennberg, M.J. Cubison, J.L. Jimenez, A. Fried, P. Weibring, J.G. Walega, S.R. Hall, A.J. Weinheimer, R.C. Cohen, G. Chen, J.H. Crawford, L. Jaegle, J.A. Fisher, R.M. Yantosca, P. Le Sager, and C. Carouge, Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010, 2010. Mintz, Y., and G. K. Walker, Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature, J. Appl. Meteorol., 32(8), 1305-1334, 1993. Parrella, J. P., M. J. Evans, D. J. Jacob, Q. Liang, L. J. Mickley, B. Miller, J. A. Pyle, and X. Yang, Effect of bromine chemistry on natural tropospheric ozone: improved simulation of observations from the turn of the 20th century, (in preparation). Selin, N.E., D.J. Jacob, R.M. Yantosca, S. Strode, L. Jaeglé, and E.M. Sunderland, Global 3-D land-ocean-atmosphere model for mercury: present-day vs. pre-industrial cycles and anthropogenic enrichment factors for deposition, Global Biogeochemical Cycles, 22, GB2011, doi:10.1029/2007GB003040, 2008. Selin, N.E., D.J. Jacob, R.J. Park, R.M. Yantosca, S. Strode, L. Jaeglé and D. Jaffe, Chemical cycling and deposition of atmospheric mercury: Global constraints from observations, Journal of Geophysical Research-Atmopsheres, 112, D02308, doi:10.1029/2006JD007450, 2007. Strahan, S. E., Duncan, B. N., and Hoor, P.: Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos. Chem. Phys., 7, 24352445, doi:10.5194/acp-7-2435-2007, 2007. Yang, X., Cox, R., Warwick, N., Pyle, J., Carver, G., O'Connor, F., and Savage, N.: Tropospheric bromine chemistry and its impacts on ozone: A model study, J. Geophys. Res., 110, D23311, doi:10.1029/2005JD006244, 2005.