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Introduction

Obligatory Keeling 
Plot / Global 
Carbon Cycle 

picture goes here



Two linked hypotheses about 
Carbon-cycling in tropical 

forests:
(1) CO2 fertilization Hypothesis: undisturbed 

forests are, on average, a net carbon sink 
due to growth stimulation by high CO2

(2) Climate-mediation Hypothesis: long-term 
net sink is mediated by interaction of climate 
and plant physiology,  with high uptake during 

wet periods and loss during dry periods



(1) CO2 fertilization hypothesis:

• models (Lloyd & Farquhar, 1996; Tian et al. 1998, 2000) 
predict [CO2]-driven increase in uptake 

• Initial tower-based eddy-covariance studies in 
Amazonia show substantial net uptake (Fan et al., 1990; 
Grace et al., 1995; Mahli et al., 1998)

but these studies were short (≤1 yr); 
+ meteorology issues?

• Long-term tropical forest plots show accumulation of 
biomass (Phillips, et al., 1998) 

but some sites logged; selection issues Clark 2002; 
Phillips et al., 2002)



(2) Climate mediation hypothesis:

• Basic tree physiology in water-limited environment + 
studies of tree growth rates:  trees grow more in wet 
season

• models (Tian et al. 1998, 2000; Botta & Foley 2002) 
show strong dependence on seasonal precip & El Nino 
cycle:  net uptake in wet years & seasons, net loss in El 
Nino years and dry season

• One Amazon eddy-covariance site shows modest 
seasonality (Mahli et al., 1998; Williams et al 1998; 
Araujo et al. 2002)



Outstanding Issues
• Claims of large uptake have attracted 

much attention:

• This is a huge uptake:
– 3-7 tC/ha/yr x (5x108 ha undisturbed 

Amazon forest) = 1.5 – 3.5 Gt C/yr
– Enough to double the live biomass in a 

typical tropical forest (~150 tC/ha) in 25 –
50 years

“Towers indicate a high uptake of CO2, 
ranging between 3 and 7 ton C ha-1 y-1”

(Kabat, et al., 2000:  review of initial LBA results)

1-5 times 
the global 
“missing 

carbon” sink



Outstanding Issues (cont’d)
• Focus on claims of large uptake is 

unfortunate:
– Evidence for the claim is weak
– Distracts from the more important and useful 

things eddy flux studies can tell us
• Questions:

– Is there really a sink of such magnitude? 
– Can expected seasonal pattern be observed?
– Can we learn about ecological/climatic 

mechanisms controlling C-exchange



Approach of this study
Integration of:
(1) Eddy Covariance: whole-system C-balance (“the forest”)
+ response to environmental forcing factors; below-ground included; 
- long term averages require validation; technologically intensive; limited 

disaggregation
Including Validation/cross-check with independent ecosystem-scale 

data
• inter-site comparison with eddy flux data from companion site control 

period (Goulden, de Rocha)
• using Radon as transport tracer (Martens and Shay)
(2) Biometry: C-balance check and disaggregation (“the trees”)
+ long-term average; biological factors, disaggregation; technologically 

simple
- response to environmental forcing factors, below-ground inaccessible, 

aggregation errors
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Profile 
system
inlets 

(8 levels)

58 m:  Level 1 Eddy flux

47 m:  Level 2 Eddy flux

Part 1 (“the forest”)
64m tall tower:  Tapajos forest, Km 67



Engineer Bruce Daube
at the lower of two on-
tower, closed-path eddy 
flux systems, Tapajós
Forest, Km 67.

Eddy sample inlet and 
sonic anemometer

Engineered pressure-
and temp-controlled 
Licor CO2 analyzer 
system (accuracy, <0.2 
ppm CO2) mounted on-
tower



Initial Results: Hourly time series from the Primary Forest eddy flux tower at km 67

(A) Eddy flux of CO2 for eddy1 (58m) and 
eddy2 (47m); 

(B) friction velocity (u*); 
(C) mean CO2 concentration 0-60m 

("canopy storage"); 
(D) net ecosystem exchange (NEE = Eddy 

flux + d/dt<storage>); and 
(E) temperature profiles. 

On windy nights (days 100-102, 
U*>0.2 m/s (B)) CO2 efflux (A) is 
strongly positive, temperature profiles 
(E) are well-mixed; CO2 storage (C) is 
low, and NEE (D) ≈ flux (A). 

On calm nights (104-105), flux (A) 
and u* (B) are virtually zero, 
temperature profiles (E) are stratified, 
and CO2 storage is high, causing NEE 
to be significantly higher than eddy 
flux.

calm nightswindy nights



Checking for lost flux 
(the “Diogenes Dilemma” of Eddy 

Flux measurements)

• Unlike (perhaps) virtue, mass is 
conserved; continuity equation works

c c c u c w cu w st x z x z
∂ ∂ ∂ ∂ ∂′ ′ ′ ′+ + + + =∂ ∂ ∂ ∂ ∂

Vertical 
eddy flux 

divergence

Storage Flux to be 
measured

Flux Divergence terms assumed = 0
(horizontal homogeneity, mean 

vertical wind =0)
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Checking for lost flux 
(the “Diogenes Dilemma” of Eddy 

Flux measurements)

• Unlike (perhaps) virtue, mass is 
conserved; continuity equation works

c c c u c w cu w st x z x z
∂ ∂ ∂ ∂ ∂′ ′ ′ ′+ + + + =∂ ∂ ∂ ∂ ∂

Vertical 
eddy flux 

divergence

Storage Flux to be 
measured

Flux Divergence terms assumed = 0
(horizontal homogeneity, mean 

vertical wind =0)

When are these least 
likely to be zero?

When eddy flux (w’c’) is low
(i.e., low turbulence) 



Q:  Is there “lost flux”?

We expect total nighttime 
NEE (which depends only 
on the physiology of 
forest respiration), to be 
essentially independent of 
atmospheric turbulence.  

Definition:  Net Ecosystem Exchange:

NEE = Eddy Flux +     <canopy storage>

Flux out the top “Storage flux”

Expected 
Relations:
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… leads to compensating 
build-up of CO2 in canopy

dt
d

NEE components, 
however, are expected to 
depend on turbulence, but 
in opposite directions. 

“Turbulence” 
(e.g. U* = friction velocity)



Observed 
Relations:

Fall-off in 
NEE for 
U*<0.2

Q:  Is there “lost flux”?

We expect total nighttime 
NEE (which depends only 
on the physiology of 
forest respiration), to be 
essentially independent of 
atmospheric turbulence.  

Answer:  Yes, it looks 
like it. As U* 0, eddy 
flux decreases and 
storage flux increases as 
expected, but their sum 
(NEE) declines for U* < 
0.2 m/sec:  



Observed 
Relations:

Fall-off in 
NEE for 
U*<0.2

“lost flux”

Q:  Is there “lost flux”?

We expect total nighttime 
NEE (which depends only 
on the physiology of 
forest respiration), to be 
essentially independent of 
atmospheric turbulence.  

Answer:  Yes, it looks 
like it. As U* 0, eddy 
flux decreases and 
storage flux increases as 
expected, but their sum 
(NEE) declines for U* < 
0.2 m/sec:  

We take this as evidence 
of lost flux.
Solution: u*-filter data, 
then fill with interpolation



Diurnal Flux pattern
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Checks and tests of ”lost flux” correction

1. Comparison between different towers 
in similar sites

2. Using continuous radon measurements 
as transport tracer

3. Scale up from small-scale chambers
4. Boundary layer budgets  
5. Etc … 



1st Comparison:

eddy flux data 
Km 67 site (Harvard), Tapajos forest 

versus 

Km 83 site (UC Irvine), Tapajos forest



NEE and PAR
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Overlap time period between km67 and 
km83 eddy flux towers:  cumulative NEE

Day of year (1/1/2001 = 1)
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2nd Comparison:

eddy flux data
with 

continuous atmospheric radon (Rn) measurements 
(collaboration with Martens, Shay, UNC; Moraes, USP)
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Independent CO2 Net Ecosystem Exchange can be 
derived from atmospheric and soil emission data 
for Rn, plus atmospheric concentrations of CO2
(omitting reference to eddy flux data)(night only). X
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Rn: surface (soil) flux  

= storage flux 

+  atmospheric 
transport flux

Measured 
directly

NEE = (1/h) ∂/∂ t ∫ CO2 dz + b × Rn-transport flux





Summary for Part 1
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Some Questions

1. Why is the forest not in carbon 
balance?

2. Why is C-exchange seasonality the 
opposite of expectation?



dendrometers, 1000 trees

dbh tapes, 2800 trees

quantify woody debris, 
coarse

fine, and litter

Part 2 (“the 
trees”):
Biometric Study 
of Tapajós
Forest, km 67



Biometry plots upwind of flux tower, 
with locations & sizes of all trees >35cm, subset>10cm DBH

Transects 
(from 35 cm DBH)

(inset) Coarse Woody Debris Plots

Legend for CWD Plots

plot size of wood # area

> 30cm
10 - 30 cm

2 - 10 cm

32

64

64

1200 m2

25 m2

1 m2

tower

(20 ha, 2800 trees, stratified)

N



Working in the rainforest has many hazards

Treefall KO’s 
Km 67 Outhouse

Outhouse 
remnants

Fallen tree
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on field studies near Manaus

(Chambers et al. 2001)
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mortality, and dead wood 
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Eddy 
Flux

(u* cor-
rected)

Net Flux for the 
Tapajos Forest 
between 1999 and 
2001.  The magnitude 
of the net flux is 
sensitive to the 
decomposition rate 
of the dead biomass, 
k (not yet directly 
measured).  

Calculations were 
made using a 
maximum plausible 
range of literature 
values for k, all of 
which produce a 
negative net flux 
over this two year 
interval. 

Biometry agrees with 
u*-corrected eddy 
flux
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Question 1: 
Why is this forest not 

in carbon balance?

Three observations to 
consider:

(1) The balance for 
live wood and dead 
wood is in opposite 
directions

(2) Stock of above-
ground dead wood is 
exceptionally large:
• in comparison to other 
sites;

• relative to what is 
needed for steady-state

(≈ decade of mortality 
inputs to accumulate the 
excess dead wood stock)

live wood 
net gain:  
+1.5 ± 0.6 

MgC ha-1 yr-1

dead wood 
net loss:  
+3.9 ± 1.3 

MgC ha-1 yr-1

Net flux 
from

above-
ground 
biomass

Eddy 
Flux

(u* cor-
rected)



Changes in biomass and tree number density, by size class
Question 1 (cont’d): 

Why is this system not 
in carbon balance?

Recruitment = 0.7 Mg C ha-1yr-1Growth = 3.3 Mg C ha-1yr-1

Net = 1.5 Mg C ha-1yr-1

Mortality = -2.4 Mg C ha-1yr-1
Outgrowth = -2.7 Mg C ha-1yr-1
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Observation 3:

Demographic shift:

(a) Increase in 
number density and 

biomass in the 
smaller size classes 
relative to larger 

(b) exceptionally 
high recruitment 

(4.8%) compared to 
intact Amazon 
forest (0.8% -
2.8%; Phillips & 
Gentry, 1994)



Perhaps 
contributed to by 

recent El Niňo
events?

Question 1: 
Why is this forest not in carbon balance?

Hypothesis: 

Tapajós forest site is recovering 
from recent episode(s) of 

disturbance which:

(1) Caused sharply elevated 
mortality preceeding onset of 

this study. 

(2) Caused a large increase in 
dead wood pool 

(to the point where losses 
exceed inputs) 

(3) Opened canopy gaps causing 
significant new growth and 

recruitment into smaller size 
classes of live wood (making 

overall growth uptake 
exceptionally high) 

Condit et al. (1995), Williamson et al. 
(2000) link El Nino to elevated tree 

mortality



Question 2:  Why is C-exchange 
seasonality the opposite of expectation?
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Tree Growth & Ecosystem 
Respiration (nighttime NEE) both 
correlate with precipitation, but in 

opposite directions…

…but the Respiration response 
(negative) is stronger than 
the positive tree growth:
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Data-model comparison
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Summary
• Carbon balance: net loss, because respiration 

losses from excess dead wood dominate gains 
from tree growth 

transient disturbance-recovery dynamic –
probably typical of old-growth forest, but not 
seen in eddy flux studies so far



Summary
• Carbon balance: net loss, because respiration 

losses from excess dead wood dominate gains 
from tree growth 

transient disturbance-recovery dynamic –
probably typical of old-growth forest, but not 
seen in eddy flux studies so far

• Seasonality: net loss during the wet season 
(even though tree growth is high), and uptake 
during the dry season 

uptake processes less sensitive, 
respiration more sensitive 

than ecosystem models currently predict 

to short-term 
surface water 

variations 



Implications
• for Eddy covariance studies:

correcting for nighttime bias in eddy flux 
measurements (e.g. with a u* filter) is key



The u* filter is widely used for calculating annual sums

Published reports using u* filter Published reports not using u* filter

Malhi (1998) Amazon
Grace (1996) Amazon

(-5.9 tC/ha/yr)
(-2.2 tC/ha/yr)

Valentini (1996) Italy
Valentini (2000) Italy
Pilegaard (2001) Denmark
Cited in Valentini (2000) Iceland
Black (1996) Saskatchwan
Lee (1999) Borden, Ontario
Schmid (2000) Indiana
Aubinet, M Cited in Valentini Belgium
Lindroth (1998) Sweden
Valentini PI Italy
Berbigier (2001) France
Valentini (2000) Germany
Bernhofer PI Cited in Valentini Germany
A Ibrom PI Cited in Valentini Germany
Dolman PI Cited in Valentini Netherlands
Moncrieff PI Cited in Valentini UK
Vesala PI Cited in Valentini Finland
Hollinger (1999) Howland
Goulden (1996) Boreas
Malhi (1999) Saskatchwan
Valentini (2000) Italy
Suyker (2001) Oklahoma
Barford (2001) Harvard

E.g. Araujo et al. (2002), 
applied u* correction to data 
from the same site as Malhi

et al. (1998), reducing 
uptake by 5 to 6 t C ha-1 yr-1
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Implications for modeling studies 
of ecosystem dynamics

• C-balance: difficult for site-specific studies to 
address basin-wide uptake predicted by models.
– predicted CO2 enrichment effect is small (0.1-0.5) 

compared to eddy flux uncertainty (±1) and ecosystem 
variability (1-4) (units:  tC/ha/yr)

• Seasonality: 
– How does the dry season control decomposition? 
– What determines the forest’s ability to avoid significant 

drought stress? 
– Can the forest avoid stress in unusually dry (El Nino) 

years?  
the $64K question 

(not yet answerable by this study)





Undisturbed Amazonian forests: source or sink?
Summary of recent studies

Net Source
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Caution!

There is a big 
difference 

between filtering 
and filling on 

FLUX versus on 
NEE

Day of year (1/1/2001 = 1)
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Log-linear stem density distribution
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The U* filter correction:

• Is applied day and night 
(but has very little effect during most days)

• Needs to be applied to NEE (= sum of 
measured flux and storage), NOT to eddy 
flux alone.

• Is not always needed even at night



Mid wet-season (days 152-199) 
cumulative NEE showing net 
carbon loss and a significant 
effect of the u* filter correction.

Late dry-season (days 355 – 380) 
cumulative level 1 NEE showing 
carbon uptake and little effect of 
u* filter. 

(Inset graphs show the different 
relationships between nighttime 
NEE and U*, with very little "lost 
flux" in the dry season.)



Ecosystem respiration R (night 
NEE, U*>0.2), shows reduced R 
during the dry season, abruptly 
increasing when rains start 
(histogram); 

NEE vs. PAR for dry season and 
wet season, showing greater net 
uptake in the dry season. Most of 
the increased uptake could be 
attributed to lower respiration 
rates.
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